

the regional learning alliance

At Cranberry Woods.

CAITLIN HANZEL

MECHANICAL OPTION
THE PENNSYLVANIA STATE UNIVERSITY
THE DEPARTMENT OF ARCHITECTURAL ENGINEERING
ADVISOR: DR. WILLIAM BAHNFLETH, P.E.

APRIL 15, 2009

PROJECT SIZE: 76,000 SF
LOCATION: Cranberry Township, PA
COST: \$14,290,677
STORIES: (1) below (2) above grade

STORIES: (1) below (2) above grade

CONSTRUCTION TIME: 10/15/04-08/24/05

DELIVERY METHOD: Design-Bid-Build

OWNER:

MEP:

GC:

ARCHITECT:

STRUCTURAL:

project team:

Regional Learning Alliance
Renaissance 3 Architects
Tower Engineering
Barber Hoffman, Inc.
Landau Building Company

LEED SILVER

existing mechanical system

AHU-1:

air side:

- ► AAON RL-075 Variable Volume air handling unit
- ► 100% outdoor air to the building's fan-coils
- ➤ Controlled by direct digital controller & CO2 sensors.

AHU-2:

- ► AAON (size 18), constant volume air handling unit
- Dedicated to the conditioning and ventilation of the lobby/atrium air.

FCU'S:

► Horizontal Blower Coil Air Handler's (BCHC)

TERMINAL BOXES:

Regulates amount of outdoor air based on occupancy sensors.

Anglia filtur option and/or

existing mechanical system

Chilled Water:

water side:

- ➤ 75-ton, LL-075 air-cooled chiller with evaporative condenser and scroll compressor
- ➤ Driven by (2) VFD pumps, (180 & 165 gpm)
- ► EWT: 52 F, LWT: 42 F, Delta T= 10F

redesign proposal

- ► Replace fan-coil units with *Radiant Ceiling Panels* and high induction diffusers
- ▶ Redesign the DOAS for a *supply air temperature of 45 F* vs. 55F

redesign proposal

- ► BENEFITS OF RADIANT CEILING PANELS
 - 1. Ability to alter acoustical performance
 - 2. Enhanced comfort levels due to radiant loads being treated directly
 - 3. Radiant Asymmetry
 - 4. Reduction in operation and maintenance costs
 - 5. Long term savings
- ► BENEFITS OF LOWER SUPPLY AIR TEMPERATURE
 - 1. Eliminate all latent load in DOAS
 - 2. Reduce sensible loads on parallel system
 - 3. Reduce panel area

- ► Step 1: Determine outdoor air conditions (WB/MCDB:74.9/85.0 F)
- ► Step 2: Determine target space conditions

ENTITY	VALUES
Radiant Panel Surface	62 F
Room Set Thermostat	79 F
Corresponding Room Dew	
Point	58.6 F
Humidity Ratio	73.8 gr/lb=10.54 g/kg
Room Relative Humidity	50%

► Step 3: Determine: a.) required ventilation rates (20,221 CFM of OA) b.) design cooling loads (TRACE)

► **Step 4:** Determine supply air conditions (**45F**)

EQN 1: Wsa= Wsp- $Q_L/(0.68 \text{ Vsa})$

Wsa- SA humidity ratio (gr/lb)
Wsp=target space humidity ratio (gr/lb)
QL =space latent load (Btu/hr)
Vsa= space SA flow rate (cfm)

➤ Step 5: Determine sensible cooling loads required by the panels

EQN 2: Qsa=1.08 Vsa (Tsp-Tsa)

Qsa= SA cooling capacity (Btu/h)

Vsa= SA flow rate in each space (OA cfm)

Tsp= Space dry-bulb temperature (79 F)

Tsa= SA dry-bulb temperature (45 F)

- ► Step 6: Determine design panel cooling capacity (30-52 Btuh/sf)
- **Step 7:** Determine required panel area

EQN 3: Ap=Qsp/Qp

Ap= Radiant panel area required (ft2)

Qsp=Space sensible cooling load required from panel (Btu/h)

Qp= Cooling capacity of panel (Btu/hft2)

► Step 8: Determine heating (4-pipe) adjustments

► RESULTS:

Total Panel Area	7436 sf (30%)
Average Area of Ceiling (per room) Dedicated to Radiant Panels (%)	38%
Number of Rooms Not Requiring Panels	13
Number of RoomsNot Able To Meet Area Requirements	2
Number of Interior Rooms (theoretically) Not Needing Heating	11

► Rooms not requiring panels were typically large discussion/lecture classrooms or conference space

Typical Tenant Office:

- ▶ 178 square feet
- ► 64 SF of radiant paneling required (16, 2x2 tiles)
- ▶ 36% Radiant Panels
- ► 27% Lighting Fixtures
- ▶ 37% ACT

Typical Lecture Classroom:

- ► 707 square feet
- ▶ 88 SF of radiant paneling required (22, 2x2 tiles)
- ▶ 15% Radiant Panels
- ▶ 7% Lighting Fixtures
- ▶ 78% ACT

State 1: *Outdoor Air--* 74.9 WB/85.0 DB

State 2: *Preconditioned Air--* 79.5F, 31.8 Btu/lb

State 3 & 4: Supply Air-- 45F DB, 17.5 Btu/lb

State 5 & 6: *Return Air--* 79F DB, 50% RH

EQN 4: Qcc = 0.06 p Vsa, tot (h2-h3)

Qcc= cooling coil load (kBtu/hr)
p= average supply air density (lb/ft3)
Vsa,tot= total air supply quantity (cfm)
h2 and h3= SA enthalpy at states 2 and 3 (Btu/lb)

SUPPLY AIR TEMP (F)	COOLING COIL LOAD (kBTU/HR)	COOLING COIL LOAD (tons)
55	1,146	96
45	1,255	105 9
DIFFERENCE:	109	9

energy analysis

energy consumption by building component:

- ☐ **Heating- 39.9%**
- **■** Cooling-10.9%
- ☐ Fans- 3.8%
- □ **Pumps- 10.4%**
- **■** Lighting- 20.5%
- □ Receptacles-15.6%

energy analysis

energy consumption & operating cost comparison:

SOURCE	ORIGINAL FAN COIL DESIGN	TOWER	RADIANT CEILING PANEL DESIGN	
	Total Energy (kwH/yr)	% of Total Energy	Total Energy (kwH/yr)	% of Total Energy
Heating	571,237	40.5	498,297	39.9
Cooling Fans	198,875 211,569	14.1 15	136,126 47,457	10.9 3.8
Pumps Lighting	45,840 271,091	3.25 19.22	129,882 256,017	10.4 20.5
Receptacles	114,247	8.1	194,823	15.6
TOTAL ENERGY CONSUMPTION (kwH):	1,410,460	100	1,248,864	100
TOTAL COST PER YEAR:	\$115,687.00		\$102,842.00	

initial cost analysis

existing system initial cost:

		COST PER QUANTITY	
MECHANICAL SYSTEM COMPONENT	QUANTITY	(\$)	TOTAL COST (\$)
Trane Fan Coil Units			
BCHC012	1	1470	1470
BCHC018	3	1635	4905
BCHC024	19	1885	35815
BCHC036	14	2145	30030
BCHC054	5	2495	12475
BCHC072	1	2760	2760
ВСНС090	5	3195	15975
E.H. Price Terminal Box Units	49	average \$500	24500
AAON LL-075 Chiller	1	65000	65000
Lochinvar Boiler	2	6250	12500
AHU-1			
AAON Outdoor Air Handler RL-075	1	50000	50000
AHU-2			
AAON M2 18 Indoor Air Handler	1	18000	18000
E.H. Price Diffusers	303	Varies	28508
TOTALS:			301938

initial cost analysis

proposed system initial cost:

		COST PER QUANTITY	
MECHANICAL SYSTEM COMPONENT	QUANTITY	(\$)	TOTAL COST (\$)
Fan Coil Units			
BCHC024	1	1885	1885
ВСНС090	2	3195	6390
Radiant Panels (4-pipe)	7426 sf	\$19/sf + heating adjustments	138985
E.H. Price Terminal Box Units	12	average \$500	6000
AAON LL-075 Chiller	1	65000	65000
Lochinvar Boiler	2	6250	12500
AHU-1			
AAON Outdoor Air Handler RL-100	1	67000	67000
AHU-2			
AAON M2 18 Indoor Air Handler	1	18000	18000
High Induction Diffusers	303	100	30300
TOTALS:			346060

initial cost analysis

proposed system initial cost:

- Estimated increase in chiller size: \$1,000/ton
- ► Additional \$25,000 increase

EQN 5: Q=1.08(CFM)(Tew-Tsupp)

Q= Required Cooling Load(BTU/hr)) CFM=20,221 CFm of OA QL =space latent load (Btu/hr) Vsa= space SA flow rate (cfm)

▶ Proposed design initial cost now estimated at \$371,060, which is \$69,122 more than the existing system

estimated payback period

\$12,800 savings per year \$44,122 initial cost increase \$0.58 / square foot increase

[[potential payback of 4.5 YEARS]]

1. fan coil unit analysis

Determine whether or not the tenants were correct in stating that the existing fan coil units are acoustically unacceptable.

2. reverberation time analysis

Analyze the impact the radiant ceiling panels have on the discussion classroom reverberation time.

fan coil unit analysis

fan coil unit analysis

► HVAC equipment noise in lecture halls & offices should be limited to no more than an NC rating of 30-35; equivalent Leq=35-40 dBA

fan coil unit analysis

► Step 1: Calculate the discharge sound power for the fan coil unit

							FAN TYPE	
			STATIC	STATIC		CALCULATED		TOTAL Lw OF
	AIRFLOW		PRESSURE	PRESSURE		Lw	FACTOR	FCU
ROOM	(cfm)	AIRFLOW (m3/s)	(in wg)	(Pa)	FAN HP	(dB)	(dB)	(dB)
2212-							Forward	
OFFICE	250	0.17987	0.56	139.49	0.5		Curved	
63 Hz						75.44	-2	73.44
125						75.44	-6	69.44
250						75.44	-13	62.44
500						75.44	-18	57.44
1000						75.44	-19	56.44
2000						75.44	-22	53.44
4000						75.44	-25	50.44
8000				·		75.44	-30	45.44

fan coil unit analysis

► Step 2: Calculate average sound absorption coefficient for the office

	SURFACE							
ENTITY	AREA (sf)	SOUND ABSORPTIO	ON COEFFICIE	NT				
		63 Hz	125	250	500	1000	2000	4000
Walls	440	0.2	0.29	0.1	0.05	0.04	0.07	0.09
Windows	39.7	0.25	0.18	0.06	0.04	0.03	0.02	0.02
Floor (Carpet)	217	0.01	0.02	0.06	0.14	0.37	0.6	0.65
Ceiling (ACT)	217	0.4	0.58	0.59	0.69	0.86	0.84	0.75
Sα		186.90	264.95	187.43	203.70	285.70	344.07	344.19
αavg		0.21	0.29	0.21	0.22	0.31	0.38	0.38

fan coil unit analysis

➤ Step 3: Calculate incident sound power on the ceiling common to the office

Frequency Band (Hz)	αavg	Lw, ceiling (dB)
63	0.21	76.9
125	0.29	72.29
250	0.21	65.95
500	0.22	60.84
1000	0.31	59.17
2000	0.38	55.83
4000	0.38	52.83

fan coil unit analysis

➤ Step 4: Calculate the transmission loss through the acoustical ceiling tile and the final sound power level in the room

Frequency Band	TL of ACT	Correction Factor	TL	Lw, room
(Hz)	(dB)	(T)	(dB)	(dB)
63	8	0.0001	7.997	68.903
125	9	0.0001	8.996	63.294
250	8	0.0001	7.997	57.953
500	10	0.0001	9.99	50.85
1000	10	0.0001	9.99	49.18
2000	17	0.0001	16.97	38.86
4000	22	0.0001	21.9	30.93

fan coil unit analysis

➤ Step 5: Calculate sound pressure level (Lp) and A-Weighted dB values to plot to NC and RC curves

Frequency Band	Lp		A-Weighted
(Hz)	(dB)	A-Weighting	dB Level
63	64.17	-25	39.17
125	57.63	-15	42.63
250	53.22	-8	45.22
500	45.98	-3	42.98
1000	43.3	0	43.3
2000	32.75	1	33.75
4000	25.63	1	26.63

fan coil unit analysis

NC Rating ~ 42

- Exceeds suggested NC ratings of 30-35 by almost 7 decibels
- ► RC-40 Rating
- ► Allegations correct in that the acoustics of the FCU's were *unacceptable*

reverberation time analysis

- ► The acceptable reverberation time for lecture & conference space range between **0.7-1.1 seconds**; classrooms **0.6-0.8** seconds
- Calculate current reverberation times and the impact the radiant ceiling panels will have on this value

reverberation time analysis

- ► **Step 1:** Calculate the volume of the room
- ▶ **Step 2:** Determine room properties and absorption coefficients
- ▶ **Step 3**: Determine surface areas of all materials in the room
- ▶ **Step 4:** Calculate the total square foot of room absorption in Sabins
- ➤ **Step 5:** Calculate the Sabine reverberation time using the following equation:

EQN 1: T60 (sec) = 0.05*(Volume/Total Room Absorption)

current reverberation time calculations:

	OUDEA OF						
	SURFACE						
	AREA						
CONSTRUCTION MATERIAL	(sf)	SOUND ABSO	PRPTION COLI	FICIENT			
		125	250	500	1000	2000	4000
Floor							
(carpet, heavy on concrete)	746.74	0.02	0.06	0.14	0.37	0.6	0.65
Ceiling							
(ACT, 3/4" thick in suspension							
system)	700	0.08	0.29	0.75	0.98	0.93	0.96
Lighting Fixtures							
(Metal)	46.74	0.05	0.1	0.1	0.1	0.07	0.02
Walls							
(GWB, 2 layers, 5/8" thick on metal							
studs w/ batt. Insulation)	830.1	0.28	0.12	0.1	0.07	0.13	0.09
Windows							
(Glass, heavy, large panes)	88.48	0.18	0.06	0.04	0.03	0.02	0.02
Acoustical Wall Panels							
(1" thickness)	125.83	0.14	0.27	0.8	1.11	1.14	1.14
Door							
(solid core wood)	21	0.19	0.14	0.09	0.06	0.06	0.05
Sα		343.23	394.31	823.32	1168.66	1356.70	1379.29
T reverb = $0.05 \text{ (V/S}\alpha)$		1.12	1.0	0.47	0.33	0.32	0.30

proposed reverberation time calculations:

	SURFACE						
	AREA						
CONSTRUCTION MATERIAL	(sf)	SOUND ABSORPTION COEFFICIENT					
		125	250	500	1000	2000	4000
Floor							
(carpet, heavy on concrete)	746.74	0.02	0.06	0.14	0.37	0.6	0.65
Ceiling							
(ACT, 3/4" thick in suspension							
system)	645	0.08	0.29	0.75	0.98	0.93	0.96
Ceiling							
(Sterling Radiant Ceiling Panels)	88	0.76	0.79	0.79	0.91	0.74	0.53
Lighting Fixtures							
(Metal)	46.74	0.05	0.1	0.1	0.1	0.07	0.02
Walls							
(GWB, 2 layers, 5/8" thick on							
metal studs w/ batt. Insulation)	830.1	0.28	0.12	0.1	0.07	0.13	0.09
Windows							
(Glass, heavy, large panes)	88.48	0.18	0.06	0.04	0.03	0.02	0.02
Acoustical Wall Panels							
(1" thickness)	125.83	0.14	0.27	0.8	1.11	1.14	1.14
Door							
(solid core wood)	21	0.19	0.14	0.09	0.06	0.06	0.05
Sα		338.83	378.36	782.07	1114.76	1305.55	1326.49
T reverb = $0.05 \text{ (V/S}\alpha)$		1.14	1.0	0.49	0.35	0.32	0.30

reverberation time comparison

solar breadth

- Per owner request
- Designed to power 3.132 kW of office lighting
- (24) panels + (1) inverter for an initial cost of \$31,733
- Payback period of 60 years
- ► Not including financial incentives

conclusions

► Mechanical Redesign

- -Reduced annual operating costs by \$12,800.
- -The \$44,122 increase in initial cost has a potential payback of only 4 years
- -Enhanced thermal comfort in office & classroom space

► Acoustical Analysis

- Reverberation times slightly increased by installation of radiant ceiling panels
- Will not dramatically alter the existing acoustics of the space

► Solar Analysis

- Extremely long payback period due to the lack of solar radiance available in Pennsylvania
 - -Will add to the building's sustainable design

Just wanted to say thanks!

Justin Griffith

Project Sponsor and General Manager of The Regional Learning Alliance

► Jim Kosinski & Thomas Gorski

Principle and Project Managers, Tower Engineering

► Dr. William Bahnfleth

Faculty Advisor

- **▶** Dr. Stanley Mumma
- Christopher Conroy

▶ Dan DiCriscio

Mechanical Engineer, Mueller Associates

► John O'Brien

Construction Manager, Landau Building Company

► Todd Garing

Mueller Associates

► My family & most importantly, the Wonderful AE Class Of '09

Any QUESTIONS?